Introduction to
 Alignment, Mapping and Indexing

The problem we want to solve

GGTACCCCCAAATTCGAAAGAGCCGAATGAAGTGGAAAGAATGGCCATTCAAATGGCTTGGGA

CAGGGCGCGCCGCTGGCCGAGAAAACCGCATTACAAATACTCTCAAAGCAGGATTTCTTTCTATAGGTAGTCAGTCCACAATTTTCACAT TTGCAGCCAGGTGGACATCTTTGGGCCAATGATGAGGAGAAGGTGGAGGAAGAAGGAAATGAGGAAGAGGAGAAAGAAGAGTATGGC ATITTACAAACTGTGACCGTTTCTGTGTGAAGATTTTAGCTGTCTGTCGGACTTGGGGGTCTCAGGGAAACTCACTTTGCCCCCCAGC TGAGGTTTTCAGGAAATCTGGAAACCTACAGTCTCCAAGCCTGCTCAGCCAAGAACGCGGCGGGCGGCGGCGGTGGCGACGGCGG CGGCGGCGCAGGACCTCCGCGCCTCCATTATGCTATTCTGCCCGCCGTGGGTGACAAACAGACGGATGCTACCAGCCCAGCCCAGT CCCGGGGAGCCAGCTGGCCTGGGGTTCGGTCCCGCGTCTTCCCTCATTCTGTGCCGCTGCCGAGCCTGTCTCAGCTCCACACACG CTTGGGAGCTGCAGATGCCTCCGCCCCTCCTCTCTCCCAGGCTCTTCCTGCCGTTGAACCCCGGCGGCGGGCTCTCGGCCAGCGG CGCGCCCTGGTACCCCCAAATTCCAAAGAGCCGAATGAAGTGGAAAGAATGGCCACAAATGGCTTGGGCCCGAGTGACCATGGGATG GTTAGGTAGGATTTTAGAGGCGACTGCTCCTGGAATTAGAGAAAGAGTTTCATTACAACCGCTACCTGACCCGAAGGCACTCGGGCCCA TGCCTTCCTCTCCTTCGCTGTTTGATTTCTATTCTGTTTAGCCTGAGTTGGAGATGCCGGAGGTGCCGTGGTGGAAGAAGTCTTGAACG AATTTGGAGGCGTCTCCGTGGCAGCTAAGCGAGCACGGGTTCTGCTGGTGCAGGATGACACTGGCAGCCACTGCCGCGGACTTGTAT CTCTTGTCTTCCTGCTTTTATAGAGAATAGAATGACACTCACAACTCTAACTACCTGTCAGAAGCAGGCAGGAGCTAGTAAGGATGAATTT GTAGCAAAATTAGCAAGTGGACTTCTTTCTССТСТТССТСАТТССТТСТТССТССАССТТСТССТСАТСТТАААТСТTТААСАТАСТАССТА AAGGGAACCTGCAATAATCTTGAAAAAGGACTTCAATCCGACGTTTTCGTGTCAAATAAGGATTAAAGAGAAACTCCTCCGCGAGCCGT GCGCCGAGGGTGGCGGCGGGGGCCTGAAGCGTGAGGAGCCTTCAATATGTATTTAACCAGGGACCGTCGGTATGAGGTGGCCCGGG TTCTTATTTGTTTGGGGGCTGGAGGGGGGAGACGGAGAAACAGTGAAAAGTTCCTGAGCCCCATAAAGGGACTGTCTGGGGAGCGCC TCGTAGCCATAGAATTCCACCGCCGCCGCCCGCCGCGTAGTCGTACTTGAAGCCGAGCGCAGGCGGGTGGTTCATTAACTCTGACTT TGCCTTTGATTTTGCTCGACCTCTGCTTCGTCAAAATCTGGTTTCAGAATCGAAGGATGAAGATGAAAAAGATGAATAAAGGAGGAAAAG GAAGAAAACAAGGACTAAGCAAAAAAGAAAGACCCCCCCTATAGCAGGATTTTAAAATTTTTCTCTTTTCTTTTTCAAGATTATTGCAAGG CGAGCGTGGTGCAATATCCCGACTGTAAATCCTCCGCCAACACTAACTTTTAAAAAAAAACACCCAGCAGGTACCATGCTAAGACAACAT CACATGCATTATTATGACTCACGTATACAATACAAAGTACTTGGACCAGGAACAGGGTCTTTAATCCTTATTTGACACGAAAACGTCGGATT GAAGTCTCTCATGCCCAACTAGTGGGGTTTCCTGGCACTGGACCCCAGCAAGTGGTCCTAGAGGCGAAAAGGAAGAAAACAAGGACT AAGCAAAAAAGAAAGACCCCCCCCCCCTGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGACATGGTGATATCACATGGACTT CTGGGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTAGCAGTCCTAAACCCTACCCAGCCTGCTGCCTCAGCACAGCCAAGGGAAA ATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACTTGGACCACTGTTGATTTTTATT1T1TCTCTT1TTTCTCCTATAGCAGGATT TTAAAATCGGGCCCACCTTAACTCGGGAGGGCCGCGCTGAGGCTGGGAGCCGGAGATTCGGGCGAGGGCAGTGTCTGCGGGGCGC GGTCGCGCAGCTCCCCGGGCGAGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGGGCGATGTCACCATTTCCCGCCGCCGCCGT CGCCACCGCCGCCGCCCGCCGCGTAGTCGTACTTGAATAGCTGGACATAAAGACAAATGACAAAAAATTATTATTATAGATATATTTGGTC TGTGTGTTATGTCCTAAGGTGTITTGTCTGCAGTTTGAGAGCATGTTGCTGGTAGCCTGAGTTGGAGAT

The problem we want to solve

GGTACCCCCAAATTCGAAAGAGCCGAATGAAGTGGAAAGAATGGCCATTCAAATGGCTTGGGA

CAGGGCGCGCCGCTGGCCGAGAAAACCGCATTACAAATACTCTCAAAGCAGGATTTCTTTCTATAGGTAGTCAGTCCACAATTTTCACAT TTGCAGCCAGGTGGACATCTTTGGGCCAATGATGAGGAGAAGGTGGAGGAAGAAGGAAATGAGGAAGAGGAGAAAGAAGAGTATGGC ATTTTACAAACTGTGACCGTTTCTGTGTGAAGATTTTAGCTGTCTGTCGGACTTGGGGGTCTCAGGGAAACTCACTTTGCCCCCCAGC TGAGGTTTTCAGGAAATCTGGAAACCTACAGTCTCCAAGCCTGCTCAGCCAAGAACGCGGCGGGCGGCGGCGGTGGCGACGGCGG CGGCGGCGCAGGACCTCCGCGCCTCCATTATGCTATTCTGCCCGCCGTGGGTGACAAACAGACGGATGCTACCAGCCCAGCCCAGT CCCGGGGAGCCAGCTGGCCTGGGGTTCGGTCCCGCGTCTTCCCTCATTCTGTGCCGCTGCCGAGCCTGTCTCAGCTCCACACACG CTTGGGAGCTGCAGATGCCTCCGCCCCTCCTCTCTCCCAGGCTCTTCCTGCCGTTGAACCCCGGCGGCGGGCTCTCGGCCAGCGG CGCGCCCTGGTACCCCCAAATTCCAAAGAGCCGAATGAAGTGGAAAGAATGGCCACAAATGGCTTGGGCCCGAGTGACCATGGGA TGGTTAGGTAGGATTTTAGAGGCGACTGCTCCTGGAATTAGAGAAAGAGTTTCATTACAACCGCTACCTGACCCGAAGGCACTCGGGC CCATGCCTTCCTCTCCTTCGCTGTTTGATTTCTATTCTGTTTAGCCTGAGTTGGAGATGCCGGAGGTGCCGTGGTGGAAGAAGTCTTGA ACGAATTTGGAGGCGTCTCCGTGGCAGCTAAGCGAGCACGGGTTCTGCTGGTGCAGGATGACACTGGCAGCCACTGCCGCGGACTT GTATCTCTTGTCTTCCTGCTTTATAGAGAATAGAATGACACTCACAACTCTAACTACCTGTCAGAAGCAGGCAGGAGCTAGTAAGGATGA ATTTGTAGCAAAATTAGCAAGTGGACTTCTTTCTCСTCTTCСТСАТTTССТTСTTССТССАССТТСТССТСАТСТТАААТСТTТААСАТАСТА CCTAAAGGGAACCTGCAATAATCTTGAAAAAGGACTTCAATCCGACGTTTTCGTGTCAAATAAGGATTAAAGAGAAACTCCTCCGCGAGC CGTGCGCCGAGGGTGGCGGCGGGGGCCTGAAGCGTGAGGAGCCTTCAATATGTATTTAACCAGGGACCGTCGGTATGAGGTGGCCC GGGTTCTTATTTGTTTGGGGGCTGGAGGGGGGAGACGGAGAAACAGTGAAAAGTTCCTGAGCCCCATAAAGGGACTGTCTGGGGAGC GCCTCGTAGCCATAGAATTCCACCGCCGCCGCCCGCCGCGTAGTCGTACTTGAAGCCGAGCGCAGGCGGGTGGTTCATTAACTCTGA CTTTGCCTTTGATTTTGCTCGACCTCTGCTTCGTCAAAATCTGGTTTCAGAATCGAAGGATGAAGATGAAAAAGATGAATAAAGGAGGAA AAGGAAGAAAACAAGGACTAAGCAAAAAAGAAAGACCCCCCCTATAGCAGGATTTTAAAATTTTTCTCTTTTTCTTTTCAAGATTATTGCA AGGCGAGCGTGGTGCAATATCCCGACTGTAAATCCTCCGCCAACACTAACTTTTAAAAAAAAACACCCAGCAGGTACCATGCTAAGACA ACATCACATGCATTATTATGACTCACGTATACAATACAAAGTACTTGGACCAGGAACAGGGTCTTTAATCCTTATTTGACACGAAAACGTCG GATTGAAGTCTCTCATGCCCAACTAGTGGGGTTTCCTGGCACTGGACCCCAGCAAGTGGTCCTAGAGGCGAAAAGGAAGAAAACAAG GACTAAGCAAAAAAGAAAGACCCCCCCCCCCTGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGACATGGTGATATCACATGG ACTTCTGGGGCCGAGTGAAGAATTTCTGATGTTCTTTAGTTAGCAGTCCTAAACCCTACCCAGCCTGCTGCCTCAGCACAGCCAAGG GAAAATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACTTGGACCACTGTTGATTTTATTT1TTCTCTTTTTTCTCCTATAGCA GGATTTTAAAATCGGGCCCACCTTAACTCGGGAGGGCCGCGCTGAGGCTGGGAGCCGGAGATTCGGGCGAGGGCAGTGTCTGCGG GGCGCGGTCGCGCAGCTCCCCGGGCGAGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGGGCGATGTCACCATTTCCCGCCGCC GCCGTCGCCACCGCCGCCGCCCGCCGCGTAGTCGTACTTGAATAGCTGGACATAAAGACAAATGACAAAAAATTATTATTATAGATATATT TGGTCTGTGTGTTATGTCCTAAGGTGTITTGTCTGCAGTTTGAGAGCATGTTGCTGGTAGCCTGAGTTGGAGAT

The problem we want to solve

The problem we want to solve

Given: A reference text (e.g. genome) and a query (e.g. read)

Find: The location in the reference with the "most similarity" / "smallest distance" to the query.

The Language of Strings

A string \mathbf{s} is a finite sequence of characters
$|\mathbf{s}|$ denotes the length of the string - the number of characters in the sequence.

A string is defined over an alphabet, Σ

$$
\begin{aligned}
& \Sigma_{\mathrm{DNA}}=\{\mathrm{A}, \mathrm{~T}, \mathrm{C}, \mathrm{G}\} \\
& \Sigma_{\mathrm{RNA}}=\{\mathrm{A}, \mathrm{U}, \mathrm{C}, \mathrm{G}\} \\
& \Sigma_{\text {AminoAcid }}=\{\mathrm{A}, \mathrm{R}, \mathrm{~N}, \mathrm{D}, \mathrm{C}, \mathrm{E}, \mathrm{Q}, \mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{~L}, \mathrm{~K}, \mathrm{M}, \mathrm{~F}, \mathrm{P}, \mathrm{~S}, \mathrm{~T}, \mathrm{~W}, \mathrm{Y}, \mathrm{~V}\}
\end{aligned}
$$

The empty string is denoted $\epsilon-|\epsilon|=0$

The Language of Strings

Given two strings $\mathbf{s , t}$ over the same alphabet Σ, we denote the concatenation as $\mathbf{s t}$ - this is the sequence of \mathbf{s} followed by the sequence of \mathbf{t}

String \mathbf{s} is a substring of \mathbf{t} if there exist two (potentially empty) strings \mathbf{u} and \mathbf{v} such that $\mathbf{t}=\mathbf{u s v}$

String \mathbf{s} is a subsequence of \mathbf{t} if the characters of \mathbf{s} appear in order (but not necessarily consecutively) in \mathbf{t}

String \mathbf{s} is a prefix/suffix of \mathbf{t} if $\mathbf{t}=\mathbf{s u} / \mathbf{u s}$ - if neither \mathbf{s} nor \mathbf{u} are ϵ, then \mathbf{s} is a proper prefix/suffix of \mathbf{t}

The Simplest String Comparison Problem

Given: Two strings

$$
\begin{aligned}
& a=a_{1} a_{2} a_{3} a_{4} \ldots a_{m} \\
& b=b_{1} b_{2} b_{3} b_{4} \ldots b_{n}
\end{aligned}
$$

where a_{i}, b_{i} are letters from some alphabet, Σ, like $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$.
Compute how similar the two strings are.

What do we mean by "similar"?
Edit distance between strings a and $b=$ the smallest number of the following operations that are needed to transform a into b :

- mutate (replace) a character
- delete a character
- insert a character riddle $\xrightarrow{\text { delete }}$ ridle $\xrightarrow{\text { mutate }}$ riple $\xrightarrow{\text { insert }}$ triple

The String Alignment Problem

Parameters:

- "gap" is the cost of inserting a "-" character, representing an insertion or deletion (insertion/deletion are dual operations depending on the string)
- $\quad \operatorname{cost}(x, y)$ is the cost of aligning character x with character y. In the simplest case, $\operatorname{cost}(x, x)=0$ and $\operatorname{cost}(x, y)=$ mismatch penalty.

Goal:

- Can compute the edit distance by finding the lowest cost alignment. (often phrased as finding highest scoring alignment.)
- Cost of an alignment is: sum of the $\operatorname{cost}(x, y)$ for the pairs of characters that are aligned $+g a p \times$ number of - characters inserted.

Another View: Alignment as a Matching

Each string is a set of nodes, one for each character.
Looking for a low-cost matching (pairing) between the sequences.

The operations at our disposal
Insertion (into $\mathbf{a} \sim$ deletion from \mathbf{b})
Mutation
Deletion (from $\mathbf{a} \sim$ insertion into \mathbf{b})
When we "delete a" character in a this is the same as inserting the character"-" in \mathbf{b}. Conceptually, you can think of this as aligning the deleted character with "-". Under this model $\operatorname{cost}\left(x,-{ }^{\prime}\right)=\operatorname{cost}\left({ }^{\prime}-\quad-x\right)=$ gap for any $x \in \Sigma$

Another View: Alignment as a Matching

Each string is a set of nodes, one for each character.
Looking for a low-cost matching (pairing) between the sequences.

Cost of a matching is:

$$
\operatorname{gap} \times \# \text { unmatched }+\sum_{\left(a_{i}, b_{j}\right)} \operatorname{cost}\left(a_{i}, b_{j}\right)
$$

Edges are not allowed to cross!

Representing alignments as edit transcripts

Can think of edits as being introduced by an optimal editor working left-to-right. Edit transcript describes how editor turns x into y.

Representing edits as alignments

```
prin-ciple
|||| |||xx
prinncipal
(1 gap, 2 mm)
MMMMIMMMRR
```

misspell
||| ||||
mis-pell
(1 gap)
MMMIMMMM
aa-bb-ccaabb

ababbbc-a-b-
(5 gaps, 1 mm)
MRIMMIMDMDMD

```
prin-cip-le
```



```
prinncipal(3 gaps, 0 mm) MMMMIMMMIMD
```

prehistoric

---historic
(3 gaps)
DDDMMMMMMMM
al-go-rithm|| Xx ||X |
alKhwariz-mi
(4 gaps, 3 mm)
MMIRRIMMRDMI

How many alignments are there?

How many alignments are there?

number of alignments

Algorithm for Computing Edit Distance

Consider the last characters of each string:

$$
\begin{aligned}
& a=a_{1} a_{2} a_{3} a_{4} \ldots a_{m} \\
& b=b_{1} b_{2} b_{3} b_{4} \ldots b_{n}
\end{aligned}
$$

One of these possibilities must hold:

1. $\left(a_{m}, b_{n}\right)$ are matched to each other
2. a_{m} is not matched at all
3. b_{n} is not matched at all
4. a_{m} is matched to some $b_{j}(j \neq n)$ and b_{n} is matched to some $a_{k}(k \neq m)$.

Algorithm for Computing Edit Distance

Consider the last characters of each string:

$$
\begin{aligned}
& a=a_{1} a_{2} a_{3} a_{4} \ldots a_{m} \\
& b=b_{1} b_{2} b_{3} b_{4} \ldots b_{n}
\end{aligned}
$$

One of these possibilities must hold:

1. $\left(a_{m}, b_{n}\right)$ are matched to each other
2. a_{m} is not matched at all
3. b_{n} is not matched at all
4. a_{m} is matched to some $b_{j}(j \neq n)$ and b_{n} is matched to some $a_{k}(k \neq m)$.
\#4 can't happen! Why?

No Crossing Rule Forbids \#4

4. a_{m} is matched to some $b_{j}(j \neq n)$ and b_{n} is matched to some $a_{k}(k \neq \mathrm{m})$.

So, the only possibilities for what happens to the last characters are:

1. $\left(a_{m}, b_{n}\right)$ are matched to each other
2. a_{m} is not matched at all
3. b_{n} is not matched at all

Recursive Solution

Turn the 3 possibilities into 3 cases of a recurrence:

$$
\left.\underset{\uparrow}{O P T(i, j)=\min \begin{cases}\operatorname{cost}\left(a_{i}, b_{j}\right)+O P T(i-1, j-1) & \text { match } a_{i}, b_{j} \\
\operatorname{gap}+O P T(i-1, j) \\
\operatorname{gap}+O P T(i, j-1)\end{cases} } \begin{array}{l}
a_{i} \text { is not matched }
\end{array}\right\}
$$

Key: we don't know which of the 3 possibilities is the right one, so we try them all.

Base case: $\operatorname{OPT}(i, 0)=i \times$ gap and $\operatorname{OPT}(0, j)=j \times$ gap
(Aligning i characters to o characters must use i gaps.)

Computing OPT(i,j) Efficiently

We're ultimately interested in $\operatorname{OPT}(n, m)$, but we will compute all other $\operatorname{OPT}(i, j)(i \leq n, j \leq m)$ on the way to computing $\operatorname{OPT}(n, m)$.

Store those values in a 2D array:

Filling in the 2D Array

Edit Distance Computation

EditDistance(X,Y):
For $i=1, \ldots, m: A[i, 0]=i * g a p$
For $j=1, \ldots, n: A[0, j]=j * g a p$

For i = 1,..., m:

$$
\begin{aligned}
& \text { For } j=1, \ldots, n: \\
& \qquad \begin{array}{l}
A[i, j]=\min (\\
\quad \operatorname{cost}(a[i], b[j])+A[i-1, j-1], \\
\\
\quad \operatorname{gap}+A[i-1, j], \\
\\
\text { gap }+A[i, j-1]
\end{array}
\end{aligned}
$$

)
EndFor
EndFor
Return $A[m, n]$

Where's the answer?

$\mathrm{OPT}(n, m)$ contains the edit distance between the two strings.
Why? By induction: EVERY cell contains the optimal edit distance between some prefix of string 1 with some prefix of string 2 .

Running Time

Number of entries in array $=\mathrm{O}(m \times n)$, where m and n are the lengths of the 2 strings.

Filling in each entry takes constant $O(1)$ time.

Total running time is $\mathrm{O}(\mathrm{mn})$.

Finding the actual alignment OPT(i-1, j)

Another View: Recasting as a Graph

Another View: Recasting as a Graph

How would you find a shortest path in this graph efficiently?

Semi-global Alignment Example

Semi-global (glocal): Gaps at the beginning or end of \mathbf{x} or \mathbf{y} are free - one useful case is when one string is significantly shorter than the other
sometimes called "cost-free-ends" or "fitting" alignment
\square

We'll discuss the "fitting" variant for in the next few slides for simplicity, but the same basic idea applies for the "overlap" variant as well.

Recall: Global Alignment Matrix

OPT (i, j) contains the score for the best alignment between:
the first i characters of string x [prefix i of x] the first j character of string y [prefix j of y]

NOTE: observe the non-standard notation here; OPT((i, j) is referring to column i , row j of the matrix.

How to do semi-global alignment?

y

m. Sgap										
3.Sgap										
2:Sgap										
1 1.Sgap										
0	$1 \cdot \mathrm{Sgap}$	2.sgap	3.sgap							n : Sgap

Start with the original global alignment matrix

How to do semi-global alignment?

How to do semi-global alignment?

start traceback at max OPT(i,m) — this allows gaps after \mathbf{y}; why?

Semi-global alignment example

 and this gap after \mathbf{y}

We allow this gap before \mathbf{y}

Semi-global Alignment

What is the same and different between the "global" and semi-global ("fitting") alignment problems?
*assuming $|y|<|x|$ and we are "fitting" y into x

Global Semi-global ("fitting")
$\operatorname{OPT}(i, j)=\max \left\{\begin{array}{l}\operatorname{score}\left(x_{i}, y_{j}\right)+\operatorname{OPT}(i-1, j-1) \\ \operatorname{sgap}+\operatorname{OPT}(i-1, j) \\ \operatorname{sgap}+\operatorname{OPT}(i, j-1)\end{array}\right.$

Base case: OPT(i,0) $=\mathrm{i} \times$ sgap

Traceback starts at OPT(n,m)

Base case: OPT $(\mathrm{i}, 0)=0$

Traceback starts at max OPT(j,m)
$0<j \leq n$

Semi-global Alignment

The recurrence remains the same, we only change the base case of the recurrence and the origin of the backtrack

1) Ignore gaps before x
2) Ignore gaps after x
3) Ignore gaps before y
4) Ignore gaps after y
change base case;

$$
\text { OPT(0,j) = } 0
$$

change traceback; start from $\max _{0<j \leq m} \operatorname{OPT}(\mathrm{n}, \mathrm{j})$
change base case;

$$
\mathrm{OPT}(\mathrm{i}, 0)=0
$$

change traceback; start from $\max _{0<i s n}$ OPT(i,m)

Semi-global Alignment

1) Ignore gaps before x
2) Ignore gaps after x
3) Ignore gaps before y
4) Ignore gaps after y

Types of semi-global alignments

use mods 3\&4

use mods 1\&2
x use mods 1\&4

y

use mods $2 \& 3$

Side Note: Lower Bounds

- Suppose the lengths of x and y are n.
- Clearly, need at least $\Omega(\mathrm{n})$ time to find their global alignment (have to read the strings!)
- The DP algorithms show global alignment can be done in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time.
- A trick called the "Four Russians Speedup" can make a similar dynamic programming algorithm run in $\mathrm{O}\left(\mathrm{n}^{2} / \log \mathrm{n}\right)$ time.
- We probably won't talk about the Four Russians Speedup.
- The important thing to remember is that only one of the four authors is Russian...
(Alrazarov, Dinic, Kronrod, Faradzev, 1970)
- Open questions: Can we do better? Can we prove that we can't do better? No\#

Using semi-global alignment is not feasible for read mapping

The best algorithms we have (and like the best that could exist) to compute the optimal alignment of two strings are quadratic

If we have N reads, each of length ℓ, and the genome is of length L, then applying the optimal algorithm at each possible position (to test the edit distance) is $\mathbf{O}(\mathbf{N} \cdot \ell \cdot \mathbf{L})$

Consider a dataset with:
$N=20 \times 10^{6}$ reads
$\ell=100$
$L=3 \times 10^{9}$ nucleotides
and a processor that can do $X=3 \times 10^{9}$ operations $/ \mathrm{sec}$.
You'd wait about $(\mathrm{N} \cdot \ell \cdot \mathrm{L}) / \mathrm{X}=200,000,000 \mathrm{sec}=6.34$ years to align your reads.

How can exact matching help?

Seed \& Extend:

Seed \& Vote:

How can exact matching help?

GGTACCCCCAAATTCGAAAGAGCCGAATGAAGTGGAAAGAATGGCCATTCAAATGGCTTGGGA

CAGGGCGCGCCGCTGGCCGAGAAAACCGCATTACAAATACTCTCAAAGCAGGATTTCTTTCTATAGGTAGTCAGTCCACAATTTTCACAT TTGCAGCCAGGTGGACATCTTTGGGCCAATGATGAGGAGAAGGTGGAGGAAGAAGGAAATGAGGAAGAGGAGAAAGAAGAGTATGGC ATITTACAAACTGTGACCGTTTCTGTGTGAAGATTTTAGCTGTCTGTCGGACTTGGGGGTCTCAGGGAAACTCACTTTGCCCCCCAGC TGAGGTTTTCAGGAAATCTGGAAACCTACAGTCTCCAAGCCTGCTCAGCCAAGAACGCGGCGGGCGGCGGCGGTGGCGACGGCGG CGGCGGCGCAGGACCTCCGCGCCTCCATTATGCTATTCTGCCCGCCGTGGGTGACAAACAGACGGATGCTACCAGCCCAGCCCAGT CCCGGGGAGCCAGCTGGCCTGGGGTTCGGTCCCGCGTCTTCCCTCATTCTGTGCCGCTGCCGAGCCTGTCTCAGCTCCACACACG CTTGGGAGCTGCAGATGCCTCCGCCCCTCCTCTCTCCCAGGCTCTTCCTGCCGTTGAACCCCGGCGGCGGGCTCTCGGCCAGCGG CGCGCCCTGGTACCCCCAAATTCCAAAGAGCCGAATGAAGTGGAAAGAATGGCCACAAATGGCTTGGGCCCGAGTGACCATGGGA
TGGTTAGGTAGGATTTTAGAGGCGACTGCTCCTGGAATTAGAGAAAGAGTTTCATTACAACCGCTACCTGACCCGAAGGCACTCGGGC CCATGCCTTCCTCTCCTTCGCTGTTTGATTTCTATTCTGTTTAGCCTGAGTTGGAGATGCCGGAGGTGCCGTGGTGGAAGAAGTCTTGA ACGAATTTGGAGGCGTCTCCGTGGCAGCTAAGCGAGCACGGGTTCTGCTGGTGCAGGATGACACTGGCAGCCACTGCCGCGGACTT GTATCTCTTGTCTTCCTGCTTTATAGAGAATAGAATGACACTCACAACTCTAACTACCTGTCAGAAGCAGGCAGGAGCTAGTAAGGATGA ATTTGTAGCAAAATTAGCAAGTGGACTTCTTTCTCСTCTTCСТСАТTTССТТСТТССТССАССТТСТССТСАТСТТАААТСТTTAAСАТАСТА CCTAAAGGGAACCTGCAATAATCTTGAAAAAGGACTTCAATCCGACGTTTTCGTGTCAAATAAGGATTAAAGAGAAACTCCTCCGCGAGC CGTGCGCCGAGGGTGGCGGCGGGGGCCTGAAGCGTGAGGAGCCTTCAATATGTATTTAACCAGGGACCGTCGGTATGAGGTGGCCC GGGTTCTTATTTGTTTGGGGGCTGGAGGGGGGAGACGGAGAAACAGTGAAAAGTTCCTGAGCCCCATAAAGGGACTGTCTGGGGAGC GCCTCGTAGCCATAGAATTCCACCGCCGCCGCCCGCCGCGTAGTCGTACTTGAAGCCGAGCGCAGGCGGGTGGTTCATTAACTCTGA CTTTGCCTTTGATTTTGCTCGACCTCTGCTTCGTCAAAATCTGGTTTCAGAATCGAAGGATGAAGATGAAAAAGATGAATAAAGGAGGAA AAGGAAGAAAACAAGGACTAAGCAAAAAAGAAAGACCCCCCCTATAGCAGGATTTTAAAATTTTTCTCTTTTTCTTTTCAAGATTATTGCA AGGCGAGCGTGGTGCAATATCCCGACTGTAAATCCTCCGCCAACACTAACTTTTAAAAAAAAACACCCAGCAGGTACCATGCTAAGACA ACATCACATGCATTATTATGACTCACGTATACAATACAAAGTACTTGGACCAGGAACAGGGTCTTTAATCCTTATTTGACACGAAAACGTCG GATTGAAGTCTCTCATGCCCAACTAGTGGGGTTTCCTGGCACTGGACCCCAGCAAGTGGTCCTAGAGGCGAAAAGGAAGAAAACAAG GACTAAGCAAAAAAGAAAGACCCCCCCCCCCTGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGACATGGTGATATCACATGG ACTTCTGGGGCCGAGTGAAGAATTTCTGATGTTCTTTAGTTAGCAGTCCTAAACCCTACCCAGCCTGCTGCCTCAGCACAGCCAAGG GAAAATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACTTGGACCACTGTTGATTTTATTT1TTCTCTTTTTTCTCCTATAGCA GGATTTTAAAATCGGGCCCACCTTAACTCGGGAGGGCCGCGCTGAGGCTGGGAGCCGGAGATTCGGGCGAGGGCAGTGTCTGCGG GGCGCGGTCGCGCAGCTCCCCGGGCGAGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGGGCGATGTCACCATTTCCCGCCGCC GCCGTCGCCACCGCCGCCGCCCGCCGCGTAGTCGTACTTGAATAGCTGGACATAAAGACAAATGACAAAAAATTATTATTATAGATATATT TGGTCTGTGTGTTATGTCCTAAGGTGTITTGTCTGCAGTTTGAGAGCATGTTGCTGGTAGCCTGAGTTGGAGAT

How can exact matching help?

List of tuples of 13-mers;
(position in the query, position in the reference)
-1 indicates not found (Python behavior)

```
(0, 615); (1, 616); (2, 617); (3, 618);
(4, -1); (5, -1); (6, -1); (7, -1);
(8, -1); (9, -1); (10, -1); (11, -1);
(12, -1); (13, -1); (14, -1); (15, -1);
(16, 631); (17, 632); (18, 633); (19, 634);
(20, 635); (21, 636); (22, 637); (23, 638);
(24, 639); (25, 640); (26, 641); (27, 642);
(28, 643); (29, 644); (30, 645); (31, 646);
(32, 647); (33, 648); (34, 649); (35, 650);
(36, -1); (37, -1); (38, -1); (39, -1);
(40, -1); (41, -1); (42, -1); (43, -1);
(44, -1); (45, -1); (46, -1); (47, -1);
(48, -1); (49, 662); (50, 663); (51, -1);
```


So the basic strategy is :

Find exact matches shared between the read and reference

Group exact matches into regions likely to support a highquality alignment

Score / validate each hit location, and filter the ones that fail to yield a high-quality alignment.

There are many variations on this theme. What is a good type of seed? How should we search for seeds? How should we group seeds? How aggressively should we filter potential loci?

Common types of seeds

all 13-mers
K-mers: fixed substrings of length k .

AGATTACGACATAGAGCCAATATTTAGACAGATAGC

In some sense, k-mers are the "simplest" type of seed.

K-mers in the text are independent of the query.

How might we "index" k-mers in the text?

AGATTACGACAT GATTACGACATA ATTACGACATAG TTACGACATAGA TACGACATAGAG ACGACATAGAGC CGACATAGAGCC GACATAGAGCCA ACATAGAGCCAA CATAGAGCCAAT ATAGAGCCAATA TAGAGCCAATAT AGAGCCAATATT GAGCCAATATTT AGCCAATATTTA GCCAATATTTAG CCAATATTTAGA CAATATTTAGAC aATATTTAGACA ATATTTAGACAG TATTTAGACAGA
ATTTAGACAGAT
TTTAGACAGATA
TTAGACAGATAG
TAGACAGATAGC

Common types of seeds

MEMs: Maximal Exact Matches

AGATTACGACATAGAGCCAATATTTGGACAGATAGC	Query
GCCAGATTACGACATAGAGCCAATATTTAGACAGATAGCTT	Ref

An exact match shared between the query and the reference that cannot be extended, in either direction, without introducing a mismatch.

Unlike \mathbf{k}-mers, the MEMs depend on both the reference and the specific query.

To find MEMs efficiently, we'll need a "full-text" index, not just a token / k-mer index.

Because of their "context dependence", MEMs can be more specific than k-mers, though we don't often deal with individual seeds in isolation.

Common types of seeds

SMEMs: Super-Maximal Exact Matches
MEMs
SMEMs

CIT|ACCIC|C|G|A|G|C|A|A|C|T|T|G|G|G|G|G|A|C|T|G|T|C|G|A|G|A|A|A|A|G|AC|T|G|T|C|G|A|G|A

An exact match shared between the query and the reference that cannot be extended, in either direction, without introducing a mismatch. Also, an SMEM is not contained within any other exact match on either the query or reference.

Common types of seeds

MMPs: Maximum Mappable Prefixes

```
            MMP from index 2 on query
            L
            TCATTACGACATAGAGCCAATATTTGGACAGATAGC
GCCAGATTACGACATAGAGCCAATATTTAGACAGATAGCTT
```

A prefix of (some suffix of) a query that is an exact match with a substring of the reference, and which cannot be extended further without introducing a mismatch.

Similar to a MEM, but extension only works in one direction - the MMP depends on the query, reference and start position. Originally introduced in STAR aligner. Useful for mapping read "pieces" across exons.

Indexing

Hopefully, l've convinced you of the importance of being able to quickly find different types of exact matches (seeds).

The next few lectures will be about data structures, and the corresponding search algorithms, that will enable this on genome-scale data.

We will consider both "full-text" indexing and inverted "tokenbased" indexing (k-mers).

There are many amazing results in the literature about indexing large text corpora; but there are likely still improvements to be made!

